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First published September 17, 2014; doi:10.1152/ajpregu.00208.2014.—Intermittent
hypoxia (IH) has been the subject of considerable research in recent years, and
triggers a bewildering array of both detrimental and beneficial effects in multiple
physiological systems. Here, we review the extensive literature concerning IH and
its impact on the respiratory, cardiovascular, immune, metabolic, bone, and nervous
systems. One major goal is to define relevant IH characteristics leading to safe,
protective, and/or therapeutic effects vs. pathogenesis. To understand the impact of
IH, it is essential to define critical characteristics of the IH protocol under
investigation, including potentially the severity of hypoxia within episodes, the
duration of hypoxic episodes, the number of hypoxic episodes per day, the pattern
of presentation across time (e.g., within vs. consecutive vs. alternating days), and
the cumulative time of exposure. Not surprisingly, severe/chronic IH protocols tend
to be pathogenic, whereas any beneficial effects are more likely to arise from
modest/acute IH exposures. Features of the IH protocol most highly associated with
beneficial vs. pathogenic outcomes include the level of hypoxemia within episodes
and the number of episodes per day. Modest hypoxia (9–16% inspired O2) and low
cycle numbers (3–15 episodes per day) most often lead to beneficial effects without
pathology, whereas severe hypoxia (2–8% inspired O2) and more episodes per day
(48–2,400 episodes/day) elicit progressively greater pathology. Accumulating
evidence suggests that “low dose” IH (modest hypoxia, few episodes) may be a
simple, safe, and effective treatment with considerable therapeutic potential for
multiple clinical disorders.
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INTERMITTENT HYPOXIA (IH) has been a topic of considerable
research for decades. However, a full understanding of IH and
its biological effects is not yet at hand. Whereas some reports
claim that IH elicits pathology, others focus on its beneficial
effects. This apparent discrepancy may, at least to some extent,
be explained by the wide range of experimental procedures/
protocols described as “intermittent hypoxia” among investi-
gators. The essential feature of IH is repeated or recurrent
episodes of low oxygen (hypoxia), interspersed with periods of
normoxia. However, this definition does not begin to capture
the range of protocols reported in the literature. There appears
to be no real consensus concerning what should be defined as
“intermittent hypoxia,” nor is there any real understanding of
key variables defining the biological impact of IH. The funda-
mental goal of this brief review is to assess relevant charac-
teristics leading to beneficial/compensatory vs. maladaptive/
pathological outcomes.

Specific IH protocols/paradigms reported in the literature are
most often associated with the specific perspective or field of
study of the investigators. Reported IH protocols vary greatly
in terms of 1) the severity of hypoxia (e.g., the level of
hypoxemia, frequently reported as the inspired oxygen percent-

age); 2) the duration of hypoxia within episodes; 3) the number
of hypoxia/reoxygenation cycles (episodes) per day; 4) the
pattern of presentation (e.g., multiple episodes per day with a
normoxic period until the next day vs. exposures of limited
episodes three days per week, etc.); 5) the cumulative duration
of exposure (days/weeks/months); and 6) regulation of other
relevant variables, such as the prevailing level of arterial
carbon dioxide. Comparing literature descriptions of protocols
described as “intermittent hypoxia:” 1) the severity of hypoxia
within episodes ranges from 2% to 16% inspired oxygen; 2) the
duration of hypoxic episodes ranges from 15–30 s to 12 h; 3)
the number of cycles per day ranges from 3 to 2,400; 4) the
cumulative IH protocol duration ranges from less than 1 h, to
between 2 and 90 days; and 5) most long-lasting protocols
involve IH on consecutive days, although some use alternating
days (e.g., every other day or 3 times per week). Each of these
variables must be carefully considered before we can under-
stand the biological impact of IH since, collectively, they
define the effective IH “dose” (39).

Since many laboratories apply unique IH paradigms, dis-
crepancies in terminology make generalizations difficult and
obstruct efforts to understand the biological impact of IH. On
the other hand, it is counterproductive to completely standard-
ize protocols, since such standardization will obscure the range
of IH prevalent in life and may prevent an appreciation of the
wide-ranging impact of IH on physiology (155). To maximize
progress toward greater understanding and ability to manipu-
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late IH protocols for therapeutic advantage in diverse clinical
disorders, a detailed understanding of different animal models
and mechanisms underlying each particular disorder will be
useful to define optimal IH protocols in each condition.

Although we do include some altitude physiology studies,
we do not thoroughly review literature reports concerning the
use of IH to preacclimatize individuals as a means of improv-
ing their performance at high altitude. Further, we do not
systematically discuss cellular mechanisms giving rise to the
therapeutic vs. pathogenic IH effects. Rather, the purpose of
this review was to examine key features of experimental IH
protocols that determine their impact on a wide range of
physiological systems. We emphasize in vivo animal models,
human studies, and lessons from IH-induced respiratory plas-
ticity (the perspective of the authors). Accumulating evidence
reviewed here suggests that modest hypoxia (9–16% inspired
O2) and low cycle numbers (3–15 episodes per day) often lead
to beneficial effects without detectable pathology, whereas
protocols utilizing severe hypoxia (3–8% inspired O2) and
more episodes per day (48–2,400 episodes/day) elicit pathol-
ogy (Fig. 1).

Respiratory System

Sleep apnea. Considerable progress has been made in recent
decades toward an understanding of pathophysiology and
pathogenesis resulting from obstructive and central sleep ap-
nea. Central sleep apnea is often the product of an unstable
ventilatory control system, at least in part, due to high
chemoreflex responsiveness and variable apneic CO2 thresh-
olds (261). On the other hand, obstructive sleep apnea (OSA)
typically occurs in individuals whose narrowed upper airways
and reduced upper airway muscle activity during sleep interact
to cause airway collapse (222). Although problems with
maintenance of upper airway patency result primarily in
obstructive sleep apnea, ventilatory control instability can
lead to either central or obstructive apnea depending on
airway collapsibility.

IH elicits multiple forms of respiratory plasticity expressed
as a long-lasting increase in: 1) phrenic nerve activity in
anesthetized rats (phrenic long-term facilitation, pLTF) (9, 14);
2) tidal volume in unanesthetized rats (ventilatory long-term
facilitation, vLTF) (160, 170); 3) upper airway muscle activity
(e.g., hypoglossal long-term facilitation) (34, 200, 218); and 4)
the short-term hypoxic (phrenic or) ventilatory response (154,
181). Some have suggested that these forms of respiratory
plasticity are compensatory, and reduce the incidence of ap-
neas (1, 128, 139, 199); in contrast, others have suggested that
it can have the opposite impact (35, 174, 223). Undoubtedly,
each form of plasticity listed above can be beneficial or
detrimental depending on prevailing conditions.

The therapeutic potential of IH to treat sleep apnea is
uncertain since it has the potential for both stabilizing and
destabilizing influences on breathing in anesthetized rats (129)
and humans (67). For instance, moderate IH protocols (10,
3-min episodes of 8% O2, 5-min intervals) decreased upper
airway resistance in OSA patients (1, 218). On the other hand,
this same protocol does not alter upper airway critical closing
pressure in OSA patients (198), suggesting that changes in
upper airway resistance and caliber can be dissociated from
upper airway collapsibility. Chronic IH (5-min episodes of
11–12% O2, 5-min intervals, 12 h/night, 7 days) enhances the
hypoxic ventilatory response (114, 192), which elicits benefi-
cial effects on upper airway (UA) patency, yet diminishes
breathing stability. An elevated hypoxic ventilatory response
(HVR) increases UA dilating muscle activity, thereby decreas-
ing UA resistance (10). On the other hand, an elevated HVR
increases respiratory control system “loop gain”, potentially
destabilizing breathing and (secondarily) upper airway stabil-
ity. For example, an exaggerated HVR will cause undershoots
in arterial CO2 (35), thereby, reducing ventilatory drive and
UA dilator muscle activity. These effects increase the likeli-
hood of subsequent airway collapse. High HVR levels are
thought by many to destabilize breathing in OSA. In contrast,
IH-induced vLTF might promote breathing stability by ensur-

Fig. 1. Schematic summarizing factors most
influential in determining the balance of ben-
eficial vs. pathogenic intermittent hypoxia (IH)
effects. IH protocols consisting of severe hyp-
oxia (2–8% inspired O2) and between 48–
2,400 cycles/day are prone to pathology; cita-
tions demonstrating pathogenic effects of IH
are listed in the upper left quadrant (i.e., high
cycle numbers per day with relatively severe
hypoxemia within episodes, as indicated by
orange/red shading). In contrast, IH protocols
consisting of moderate IH (�9% inspired O2;
�15 cycles/day) appear to elicit beneficial (po-
tentially “therapeutic”) effects with minimal
pathology; citations demonstrating beneficial
effects of IH are listed in the lower right
quadrant (indicated by blue shading). There is
unlikely to be a clear division between proto-
cols giving rise to pathogenic/beneficial effects
since there is most likely a gradual transition
(39); further, details of this transition may
differ in detail among physiological systems.
Representative literature concerning the range
of IH protocols investigated are summarized in
Figs. 2 (pathogenic) and 3 (beneficial).
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ing adequate ventilatory drive despite fluctuating CO2 levels
near an apneic CO2 threshold (128). In patients with moderate
OSA, acute intermittent hypoxia (AIH)-induced increases in
the HVR (i.e., progressive augmentation) are greater in the
morning, whereas vLTF is greater in the evening (67). If an
exaggerated HVR is detrimental and vLTF is beneficial with
respect to breathing stability, IH presentations may have
greater therapeutic potential in the evening.

Early studies attempting to detect vLTF in humans were
performed in poikilocapnic human subjects (i.e., uncontrolled
CO2 levels). However, recent evidence shows that IH-induced
vLTF is more prominent in individuals with slight, sustained
hypercapnia (109, 223). Mateika and Syed (139) propose that
moderate acute intermittent hypoxia combined with sustained
hypercapnia and continuous positive airway pressure may have
therapeutic benefits in sleep apnea patients. The positive air-
way pressure would maintain upper airway patency. The sus-
tained hypercapnia would promote long-term facilitation in
upper airway muscle activity, thereby increasing upper airway
patency, as well as vLTF. In principle, the number of apneas
would be reduced by sustained hypercapnia since it moves the
prevailing arterial CO2 away from the CO2 apneic threshold.
Additional work is needed to determine the efficacy and
(subsequently) optimal IH protocol to maximize upper airway
LTF and vLTF without the destabilizing influence of increased
chemoreflex sensitivity in patients with sleep apnea.

Chronic obstructive pulmonary disease. Chronic obstructive
pulmonary disease (COPD) is a category of chronic irrevers-
ible lung diseases that includes emphysema, chronic bronchitis
and asthma (186). IH training may be useful in patients
suffering from COPD. Ukrainian and Russian researchers have
used IH training to treat COPD and report beneficial effects,
including improved clinical symptoms without unwanted side
effects (215).

Randomized, double-blind and controlled clinical trials
demonstrate that repetitive mild acute IH (3–5 min of 12–15%
O2, 3–5 min normoxic intervals, 5–9 episodes/day, 15 days)
elicits beneficial effects in COPD patients, including increased
exercise time, baroreflex sensitivity, hypercapnic ventilatory
response, total hemoglobin, forced expiratory volume in 1 s,
and forced vital capacity (24, 79). However, longer hypoxic
intervals in healthy subjects revealed no significant differences
between IH-treated vs. control subjects. For example, normo-
baric hypoxia (3–10 h of continuous hypoxia 12–15% O2 for
7–20 consecutive days) revealed no difference in the hypoxic
ventilatory response or ventilatory capacity among groups (97,
232). Similarly, with hypobaric intermittent hypoxia (4,000 or
5,500 m altitude, 3 h/day, 5 days/wk, 4 wk), there were no
differences among groups in the HVR or cardiovascular func-
tion (61, 73). Accumulating evidence suggests that IH proto-
cols with short hypoxic intervals (3–5 min) are more effective
at increasing ventilatory capacity vs. prolonged hypoxic expo-
sures (3–10 h). Despite scarce literature concerning moderate
IH in COPD patients, available evidence is promising and
raises hope that IH could be used as a complementary therapy
with few adverse side effects.

Cardiovascular System

IH training has long been recognized by Russian physician/
scientists as a therapeutic approach to prime patients to with-

stand the stress of diverse disease processes. Their rationale
was that adaptations to one stress may increase resistance to
another (145). Thereafter, IH training was recognized by the
sports medicine community as a useful strategy to enhance
aerobic exercise performance (62). For example, IH (2.5 min
of 10.5% O2, 1.5-min intervals, 4 h), in combination with
low-intensity exercise, improves blood oxygen transport ca-
pacity and aerobic endurance and induces altitude acclimati-
zation (29, 98, 101, 194). In this case, “living high” and
“training low” promote hematological adaptations that im-
prove aerobic performance without eliciting adverse effects
characteristic of more severe IH protocols [e.g., chronic inter-
mittent hypoxia (CIH)].

From the opposite perspective, the association of hyperten-
sion and heart disease with OSA has fostered considerable
interest in links between IH and cardiovascular disease. Ac-
cordingly, more severe and prolonged IH protocols that more
closely simulate the IH experienced during OSA were devel-
oped. Such CIH protocols significantly increase blood pressure
(21, 57, 111, 225), increase right ventricular heart mass (143),
and are associated with pulmonary vascular remodeling and
hypertension (162). Nonetheless, moderate IH protocols elicit
beneficial cardiovascular effects in animal models and humans
(17, 163, 213, 258, 260), suggesting an IH dose-response in its
physiological impact.

Arterial hypertension. During hypoxic episodes, chemore-
ceptor-mediated sympathetic activity increases heart rate, car-
diac output, peripheral resistance, and systemic arterial pres-
sure. However, different prolonged IH protocols produce di-
vergent effects on post-IH systemic arterial blood pressure.
The hypertensive effects of severe CIH, mimicking OSA, vs.
depressor effects of modest IH exemplify this dichotomy. OSA
imposes a series of brief, intense hypoxic episodes leading to
persistent, maladaptive chemoreflex-mediated activation of the
sympathetic nervous system, culminating in hypertension (107,
175, 182). Conversely, accumulating evidence in animal mod-
els and humans suggests that moderate IH conditioning may be
safe and effective as a means of prevention and/or treatment for
systemic hypertension (213, 217).

CIH in humans and rodents elevates blood pressure, and this
effect outlasts the period of IH exposure (250). In the rodent
studies, the IH dose impacts the magnitude of increased sys-
temic blood pressure. Severe CIH protocols (60–120 epi-
sodes/h, 2–5% inspired oxygen, 14–35 consecutive days) in-
crease mean arterial pressure by 9–16 mmHg (21, 57, 111,
225). Moderate CIH protocols (15–20 episodes/h, 6–10%
inspired oxygen, 14–70 consecutive days) increase MAP by 12
mmHg (133). Yet milder protocols (10 episodes/h, 10% in-
spired oxygen, 7 consecutive days) increase MAP less than 2
mmHg in female rats (84). The greatest increases in blood
pressure were observed in studies where hypocapnia was
prevented via inspired carbon dioxide supplementation. To
mimic the episodic asphyxiation imposed by OSA, McGuire
and Bradford used combined hypoxia (6–8%) and hypercapnia
(12–14%) for 15 s, interspersed with 15-s normoxia/normo-
capnia (8 h/day, 5 days/wk, 5 wk). This protocol increased
diurnal mean systemic arterial pressure by 17 mmHg (142). In
young, healthy humans, CIH (13% inspired oxygen, 30 epi-
sodes/h, 9 h/day, 14 consecutive days) increases the short-term
HVR, blood hemoglobin concentration, and daytime blood
pressure (228).
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Chronic, severe intermittent hypoxia (57) persistently acti-
vates the sympathetic nervous system (55, 112, 182, 219, 220),
as well as the renin-angiotensin system (56, 58), increasing
blood pressure during apneic events and post-IH wakefulness.
Since carotid chemoreceptor denervation prevents CIH-in-
duced hypertension, chemoreceptor or central nervous system
(CNS) chemoreflex plasticity underlies this response (57).

The therapeutic potential of IH to treat hypertension has
been studied under hypobaric and normobaric conditions.
Treatment sessions (30 min, 2–3 h/day, 10–30 days) at simu-
lated altitudes of 1,500–3,500 m (13–17% inspired oxygen)
significantly decreased arterial pressure in 60% of hypertensive
patients (187). Although hypobaric and normobaric hypoxia
elicit similar physiological responses, hypobaric protocols are
poorly tolerated by humans (94, 193). Unwanted side effects of
hypobaric hypoxia include headache, chest pain associated
with insufficient blood flow to the heart, palpitations, and
dizziness (53). Mechanisms differentiating normobaric vs. hy-
pobaric hypoxia may include differences in ventilatory pat-
terns, alveolar gas disequilibrium, and acute hypoxic ventila-
tory responses (193).

Normobaric hypoxia is a more practical way to elicit IH,
since it is much simpler to decrease inspired oxygen fraction at
atmospheric pressure. Similar to hypobaric IH, normobaric IH
normalizes blood pressure in hypertensive patients (123, 213,
217). For example, moderate IH (10, 5 min cycles/day, 10–
14% inspired O2, 5-min normoxic intervals) administered to 56
patients with stages I-II hypertension reduced systolic and
diastolic blood pressure, heart rate, and peripheral resistance
(158). A similar IH protocol (4–10, 3-min cycles/day, 10%
inspired O2, 3-min normoxic intervals) decreased blood pres-
sure in hypertensive patients to normotensive levels (123).
Furthermore, IH proved safe in elderly patients, reducing
clinical symptoms of angina, normalizing lipid metabolism,
and microcirculation, and increasing maximal oxygen con-
sumption and exercise tolerance (103).

The antihypertensive effects of moderate IH may arise from
increased endothelial NO production (36, 68, 123, 132), which
produces vasodilation and opening of reserve capillaries (de-
creasing peripheral resistance), reduced sympathetic activity
(148, 184), minimized calcium overload of vascular smooth
muscle (36), improved water and salt metabolism (18), in-
creased antioxidant enzyme activity (7), and increased synthe-
sis of angiogenic growth factors, including VEGF and FGF
(248). Finally, moderate IH augments parasympathetic activity
similar to altitude acclimatization (90, 190).

Although CIH elicits persistent hypertension similar to OSA
(59), moderate IH protocols reduce blood pressure in hyper-
tensive rodent models and humans (213). Again, a major
reason for this divergence is that the cardiovascular response
depends on the IH “dose”. IH protocols inducing systemic
hypertension generally employed brief (6–30 s episodes) and
severe (3–9% O2) hypoxemia, as well as prolonged (6–12
h/day) exposures (57, 178, 225). In comparison, moderate IH
involves longer hypoxic episodes (45 s to several hours), less
severe hypoxia (10–12% O2), and shorter protocol durations
per day (1–2 h/day); such protocols do not increase systemic
blood pressure in normal rats and actually reduce blood pres-
sure in spontaneously hypertensive rats (213). Whereas “high-
dose” CIH elicits sympathetic nervous system activation (31,
112, 182), increased oxidative stress (105, 233), systemic

inflammation (5, 23, 202, 212), and persistent hypertension,
moderate “low-dose” IH protocols minimally activate and/or
dampen these same physiological responses. Such dose-depen-
dent impact of IH on physiological functions likely accounts
for many apparent disagreements in the literature, and suggest
that “low-dose” IH may be harnessed for therapeutic benefit
without invoking comorbidities characteristic of CIH. Indeed,
the apparent lack of adverse side effects from low-dose IH that
are often encountered with common antihypertensive drugs
makes IH an interesting and novel therapeutic strategy to treat
systemic hypertension. Before this concept can be advanced,
details of the IH dose-response must be understood to optimize
benefits while minimizing pathogenesis in each patient. The
severity, frequency, and duration of IH episodes are key
determinants of its physiological impact (Fig. 1).

Myocardial infarction. Myocardial infarction remains the
major cause of cardiovascular morbidity and mortality, despite
advances in drug therapy and interventional procedures (196).
The heart adapts to stress, such as brief ischemic episodes that
enhance myocardial tolerance to subsequent ischemic incidents
(159). Myocardial ischemic tolerance is also induced by IH
preconditioning, which exerts cardioprotective effects. For
instance, 24-h post-IH pretreatment (40 s of 10% O2, 20 s
normoxic intervals, 30 min), rats exhibit reduced myocardial
infarct size after global ischemia-reperfusion (17). Similarly,
infarct size is decreased in dogs pretreated with IH precondi-
tioning (5–10 min cycles of 9.5–10% inspired O2), as was
ventricular tachycardia and fibrillation 24 h after occlusion of
left anterior descending coronary artery (130). The same IH
protocol in rats reduces cardiac arrhythmias during ischemia
and decreases infarct size by 43% (131). Mechanisms sug-
gested to explain these cardioprotective effects may involve �1
adrenergic receptor activation (130) and/or increased nitric
oxide production (205).

In humans, moderate IH (5 min, 10–14% O2, 3-min inter-
vals, 15 episodes/day, 3 wk) increases peak oxygen consump-
tion in elderly men (50–70 years old), both with and without
coronary artery disease (25). Moreover, during submaximal
exercise (cycling at 1 W/kg), heart rate, systolic blood
pressure, blood lactate concentration, and perceived exer-
tion are diminished by IH (25). Myocardial protection cor-
relates with the ability of moderate IH (2 min of 10% O2,
2-min intervals, 30 min) to increase myocardial vascularity,
coronary blood flow, cardiomyoglobin, and antioxidant en-
zyme expression (266).

Ischemic tolerance of the heart can also be induced by
long-term intermittent hypobaric hypoxia (6, 163, 257). This
cardioprotection persists longer than normobaric ischemic pre-
conditioning (20, 26, 164, 263) and is associated with fewer
adverse side effects (e.g., right ventricular hypertrophy) vs.
chronic sustained hypoxia (6, 92, 173, 256). For example, rats
exposed to hypobaric IH (7,000 m altitude, 8 h/day, 35 days)
exhibit significantly reduced infarction size and antiarrhythmic
protection after 30 min of coronary artery occlusion (164).
Cardiac protection by hypobaric IH has been linked to several
mechanisms, including greater preservation of Ca2� homeo-
stasis (32), regulation of calcium/calmodulin-dependent pro-
tein kinase II activity (260), reduced myocardial apoptosis
(47), and opening of mitochondrial ATP-sensitive potassium
channels (102, 165).
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Intermittent hypobaric hypoxia is not only protective, but
also therapeutic with acute myocardial infarction in animal
models, although doubts continue as to whether IH represents
a safe technique in postmyocardial infarction patients (32, 45,
78, 165, 249). For instance, intermittent hypobaric hypoxia
(404 mmHg, PaO2 �84 mmHg, 6 h/day, 14 days) improves
postischemic recovery of myocardial contractile function by
elevating reactive oxygen species (ROS) production during
early reperfusion (249). Seven days after left anterior descend-
ing coronary artery ligation, rats exposed to similar protocols
showed significantly reduced left ventricular dilation and im-
proved cardiac performance (258). This effect was accompa-
nied by attenuated infarct size, increased coronary blood flow,
capillary density, and VEGF expression (258), as well as
activation of genes increasing myocardial cell survival (171).

IH increases erythropoietin (EPO) concentrations, stimulat-
ing erythropoiesis (22, 136) and increasing hematocrit, blood
viscosity, and platelet count (22). Elevated hematocrit in-
creases the risk of ischemic stroke and myocardial infarction
(117, 118). On the other hand, other studies found no evidence
for alterations in the erythropoietic response with different IH
protocols (96, 234). For example, 2-h daily of normobaric IH
(13% O2) for 12 days shows no effect on morning plasma EPO
concentration (66). Similarly, hypobaric IH at 3,000 m (14%
oxygen equivalent) does not enhance erythropoiesis (166),
whereas greater simulated altitudes (5,000–6,300 m; �7–8%
oxygen equivalent) robustly increase several hematological
variables (51, 241); thus, a dose-response relationship exists
between the severity of hypoxia and erythropoiesis.

Despite abundant literature supporting cardioprotective and
therapeutic effects of IH in myocardial infarction, clinical
translation remains controversial, possibly due to inadequate
ischemic/reperfusion models to simulate human patients (81).
Nevertheless, IH appears promising as a therapeutic strategy
for coronary heart disease due to its simplicity and long
duration of action, with few demonstrated adverse effects (32,
183, 258). However, additional studies are needed to define the
most effective IH dose to elicit optimum therapeutic outcomes
with minimal patient risk.

Inflammatory/Immune Responses to IH

OSA elicits systemic inflammation (105, 201, 243), and
markers of systemic inflammation correlate with cardiovascu-
lar disease in both OSA and non-OSA cohorts (105, 150). CIH
is hypothesized to activate NF-�B-mediated inflammatory
pathways (201), leading to increased expression of the inflam-
matory mediators TNF-�, IL-6, and c-reactive protein (CRP)
(99, 105, 206). CIH-induced inflammation may cause endothe-
lial dysfunction and injury, contributing to atherosclerosis
associated with OSA (113). From this perspective, IH is
deleterious because of its proinflammatory effects. On the
other hand, some reports indicate minimal systemic inflamma-
tion in OSA patients (76, 100, 177). Differences in these
studies may relate to the specific indicators of systemic inflam-
mation studied, or differences in the effective IH dose in OSA
patients.

In contrast to CIH (simulating aspects of OSA), studies
using more moderate IH protocols found no evidence for
systemic inflammation in rodent models (227). For instance, IH
consisting of hypercapnic hypoxia (6 min of 8% O2, 7% CO2;

6 min normoxic/normocapnic intervals, 90 min) does not
increase TNF-� or CRP in male piglets (227). Moreover, a
single daily isocapnic hypoxia exposure (oxyhemoglobin sat-
uration: 80% � 48 mmHg PaO2, 1 h/day) for 10 consecutive
days does not affect markers of systemic inflammation in
healthy young men (185).

Inflammation elicited by OSA may relate to multiple factors
beyond CIH per se, such as obesity or nocturnal arousal. For
example, 12 wk of CIH (30 s 5% O2, 30-s intervals, 12 h/day,
12 wk), increased hepatic TNF-� gene expression only in mice
fed a high-cholesterol diet (210). In OSA patients, CRP levels
are significantly correlated with the body mass index, esopha-
geal pressures, hip/waist ratio and neck circumference (76).
Inflammation may also relate to the frequent arousals experi-
enced by OSA patients (146). Thus, mechanisms of inflamma-
tion in OSA patients require further investigation.

Of considerable interest is that some studies suggest that
moderate IH protocols actually enhance the innate immune
system, while having an overall anti-inflammatory effect. For
example, in healthy humans, exposure to 4, 5-min episodes of
10% O2 (5-min room-air intervals, 14 days) augments phago-
cytic and bactericidal activities of neutrophils, while suppress-
ing proinflammatory mediators such as TNF-� and IL-4 by
more than 90% (214). These responses, which persisted at least
7 days post-IH, may augment the body’s immune defenses
without attendant inflammation.

Together, these studies provide at least some empirical
support for the idea that IH can have both proinflammatory and
anti-inflammatory actions, depending on the IH dose. Thus,
select IH protocols may have clinical applications in patients
with ongoing systemic or neural inflammation. However, the
potential of IH in immunotherapy has scarcely been explored.
Further research is necessary to identify the optimum IH
“dose” (e.g., severity of hypoxia, frequency of cycles) to
enhance the innate immune system without triggering inflam-
mation (or actually being anti-inflammatory).

Metabolic Responses to IH

According to World Health Organization criteria, metabolic
syndrome consists of obesity with associated diabetes mellitus,
impaired glucose tolerance, altered fasting glucose levels,
and/or insulin resistance (255a). Metabolic syndrome is a
chronic, multifactorial disorder resulting from complex inter-
actions between genotype, environment, and physical activity
patterns (134). A significant percentage of the obese population
suffers from OSA (140), and it has been suggested that pro-
longed CIH contributes to metabolic syndrome in individuals
with OSA. In animal models, typical CIH protocols (40 s 6%
O2, 40-s normoxia, 8 h/day, 35 days) alter metabolic hor-
mones; elicit pancreatic �-cell injury (49); and increase sym-
pathetic activation (268), systemic inflammation (4), and levels
of the appetite stimulant, neuropeptide Y (230). Collectively,
these changes increase food intake, leading to obesity, hyper-
tension, and insulin resistance (189).

In contrast, more moderate IH protocols are reported to have
beneficial effects on metabolism, including reduced body
weight, cholesterol, and blood sugar levels, as well as in-
creased insulin sensitivity. For example, IH (10–12% O2, 3
times per week, 3–6 wk) with/without physical training (20-
min strength-resistance exercises and 30 min high-intensity
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aerobic exercises) has been proposed as a means of losing
weight and increasing aerobic capacity (240) without detrimen-
tal effects often associated with prolonged CIH protocols. This
method induces physiological adaptations that enhance athletic
performance (105, 252).

Mechanisms of moderate IH-induced weight loss may in-
clude increased serotonin and/or leptin levels. Acute hypoxia
in both humans and rats increases blood serotonin levels,
although this finding is strictly correlative (72). Food intake,
protein intake, carbohydrate selection, and body weight are all
at least partially regulated by serotonin, a molecule known to
produce anorexia in rats (72). Moderate IH also reduces body
weight by increasing blood leptin concentrations and enhanc-
ing liver leptin expression (116). Leptin is a peptide hormone
secreted primarily by white adipose tissue, acting on the
hypothalamic metabolic control center to reduce energy intake,
increase energy consumption, and reduce body fat composition
(157). Differentiated human PAZ6 adipocytes cultured for 48 h
in 6% oxygen increase leptin mRNA expression, leptin pro-
moter activity, and leptin secretion by two- to three-fold (75).
Interestingly, hypoxia (8% O2) for 3 h does not significantly
alter in vivo leptin gene expression in rat adipose tissue;
however, increased leptin mRNA levels were observed in liver,
kidney, and lung tissue (147). Beyond its role in body weight
regulation, leptin also plays key roles in inflammation, tissue
repair, and angiogenesis; thus, peripheral leptin upregulation
during hypoxia may play an important role in tissue repair (52).

Moderate hypoxia (14.6% inspired O2) reduces blood glu-
cose and cholesterol levels (33, 116) and increases insulin
sensitivity in subjects with Type 2 diabetes (127). Hypoxia also
increases mitochondrial enzymatic activity, glycolysis, and
fatty acid oxidation, but reduces cholesterol synthesis (116,
226). Prolonged moderate IH (12 h, 14% O2, 7 days/wk, 4 wk),
with or without physical training, improves glucose tolerance
and increases glucose transporter (GLUT-4) levels in rats (33).
Hypoxia stimulates glucose disposal, independent of contrac-
tile activity in rodents (28, 33), isolated human muscle tissue
(8), and patients with Type 2 diabetes (127). Further, exercise
(60 min at 90% of lactate threshold) enhances the impact of
moderate hypoxia on insulin sensitivity (127), suggesting that
insulin signaling and insulin-dependent glucose transport are
upregulated following hypoxic exercise (33).

Although moderate IH effects in metabolic diseases have not
been fully explored, accumulating evidence suggests that mod-
erate IH combined with exercise may help prevent and/or
correct metabolic impairment associated with insulin resis-
tance, obesity, and Type 2 diabetes.

Bone

Intermittent hypoxia has positive effects on bone tissue
remodeling (77, 119). Rats exposed to IH (10 min, 13% O2,
10-min intervals, 4 h/day, 28 days) increase alkaline phospha-
tase activity in bone tissue (119), suggesting high osteoblast
activity and new bone formation. Moreover, rats exposed to
hypobaric IH (430 mmHg � 34 mmHg PaO2; 5 h/day, 5
days/wk, 5 wk) show increased bone mineral density (77), an
effect that may result from increased nitric oxide (NO) levels
in IH-treated rats since increased bone mineral density was not
observed in rats with NO synthase inhibition. High NO levels
inhibit bone resorption by inhibiting osteoclast formation and

resorptive function of mature osteoclasts (188). Thus, moderate
IH protocols may restrain osteoclastic activity and/or stimulate
osteoblastic activity, although potential mechanisms leading
such effects remain unknown. Further studies are needed to
assess IH effects on osteopenia and osteoporosis.

Nervous System

Learning and memory. OSA causes neurocognitive and
behavioral deficits (43). Similarly CIH protocols that simulate
IH experienced in OSA cause multiple cognitive deficits in
rodents. For instance, 14 days of CIH (90 s of 10% inspired O2,
90-s intervals, 12 h/day, 14 days) during the habitual sleep
times of adult male rats reduced REM sleep and impaired
hippocampus-dependent learning (74). Both rats and mice
display cognitive deficits after CIH, consistent with impaired
hippocampal and/or prefrontal cortex function (48, 176, 197,
224).

CIH also triggers hypersomnolence, a typical clinical com-
plaint of OSA patients. CIH during the sleep cycle for 8
consecutive weeks hinders the ability to maintain wakefulness
in mice, suggesting that CIH per se contributes to excessive
daytime sleepiness in OSA patients (242). In humans, a ran-
domized cross-over design trial demonstrated that CIH (1 min
of 6% inspired O2, 1-min intervals, 6 h/day) negatively impacts
spatial working memory in healthy young adults (30). High-
cycle frequency vs. the cumulative duration of CIH protocol
has a greater, detrimental impact on learning and memory.

CIH triggers neuronal apoptosis and cytoarchitectural disor-
ganization in brain regions involved in learning and memory,
such as the hippocampal CA1 subfield and the frontoparietal
cortex (74). Increased apoptotic activity peaks after 48 h of
CIH, and then slowly decreases to levels that remain above
normoxic controls (74). CIH reduces N-methyl-D-Aspartate
(NMDA) receptor density and the excitability of hippocampal
CA1 neurons (179), thereby diminishing the ability of hip-
pocampal neurons to express NMDA-dependent long-term
potentiation, a neuronal correlate of memory formation (172).
In contrast, moderate IH protocols do not elicit similar CNS
pathology. Rats exposed to moderate IH (5 min of 10.5%
inspired O2, 5-min normoxic intervals, 10 times/day) either
daily for 7 days, or 3 times per week for 4 to 10 wk, show no
signs of hippocampal apoptosis or astrogliosis (121, 208, 254).

Deleterious CIH effects may be more pronounced during
development. Early-life CIH is associated with anomalous
brain development (149, 211) and clinical conditions, such as
schizophrenia (42, 191), cerebral palsy, and mental retardation
(104). On the other hand, it appears that moderate IH in early
life accelerates brain development, leading to greater learning
capacity (122, 135, 216, 262). Increased learning capacity has
been studied in rodent models, expressed as increased devel-
opment of conditioned reflexes. Moderate neonatal IH in mice
(10.8% O2, 4 h/day from birth to 4 wk of age) enhances
performance in Morris water maze and 8-arm radial maze tasks
(262). A similar protocol, but with milder hypoxia (16% O2),
also enhanced spatial learning and memory in developing mice
(122). IH-increased learning capacity is associated with in-
creased brain DNA concentrations, increased neurogenesis
(135), and increased expression of proteins involved in synap-
tic plasticity (122).

Review

R1186 THERAPEUTIC DOSE OF INTERMITTENT HYPOXIA

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00208.2014 • www.ajpregu.org

 by 10.220.32.246 on D
ecem

ber 14, 2016
http://ajpregu.physiology.org/

D
ow

nloaded from
 

http://ajpregu.physiology.org/


The discrepancy among studies seems to be related to
differences in the severity of the hypoxic stimuli and the
frequency of hypoxic episodes per day. Studies used to mimic
aspects of OSA are not expected to have therapeutic benefits
due to coincident CNS pathology. On the other hand, moderate
IH protocols may enhance learning capacity in developing
rodents; the impact of moderate repetitive IH in adults is not
yet clear. Moderate repetitive IH protocols (3 times/wk, 10 wk)
appear to be safe, offering the possibility that this paradigm
may be useful as a therapeutic strategy to elicit functional
recovery from motor impairment in multiple clinical conditions
(see below).

Brain ischemia and stroke. IH preconditioning is neuropro-
tective for subsequent ischemic injury (46, 221). For example,
IH preconditioning (8% inspired O2, 4 h/day, 2 wk) reduces the
size of infarction, inflammation, and increased blood-brain
barrier permeability after 60-min of transient middle cerebral
artery occlusion (MCAO) in mice (221). Changes in gene
expression differ markedly between harmful ischemia and
ischemic preconditioning. Preconditioning seems to attenuate
the response to subsequent ischemic incidents, increasing the
expression of genes involved in the suppression of metabolic
pathways, immune responses, ion-channel activity, and blood
coagulation (46).

Some have suggested that IH has therapeutic potential for
chronic cerebral ischemia. Brain ischemia is characterized by
reduced brain-derived neurotrophic factor (BDNF), diminished
synapse formation, and impairments in learning and memory in
rodents (50, 110, 238). Seven days post-MCAO in rats, mod-
erate IH (12% O2, 4 h/day, 7 days beginning 7 days post-
MCAO) rescues ischemia-induced spatial learning and mem-
ory impairment by inducing hippocampal neurogenesis, syn-
aptogenesis, and BDNF expression (237). Moderate IH also
reduces infarct size without increasing mortality. In contrast,
the same IH protocol administered 1–2 days postischemia
increases mortality (236), suggesting that IH may have thera-
peutic potential for chronic, not acute brain ischemia. Although
moderate IH may reduce complications associated with chronic
brain ischemia in rats, studies are required to support IH as a
potential therapy for cerebral ischemia in humans. If proven to
be safe and effective, repeated low-dose IH may confer long-
term brain protection in subpopulations of individuals at iden-
tified risk for stroke.

Depression. Since many depressed patients show partial or
no response to antidepressants (54), new, more effective treat-
ment options are needed. Preconditioning with mild IH has a
preventive/therapeutic effect in rodent models of depression
(203, 204). For example, IH preconditioning (10% O2, 2 h/day,
3 days) has an antidepressant effect in learned helplessness, a
common model of depression, and returns behavioral and
hormonal variables to control levels; this effect was not sig-
nificantly different from standard antidepressant drugs (203,
204). IH also exerts therapeutic benefits with ongoing depres-
sion in rodent models, and in humans. Given the strong link
between hippocampal neurogenesis and antidepressant activity
(3, 207), and observations that IH enhances neurogenesis in
vitro (93) and neuroprogenitor cell proliferation in vivo (264),
IH may oppose depression by increasing neurogenesis.

Moderate IH (84 mmHg PaO2, 4 h/day, 14 days) produces
antidepressant-like effects in multiple animal models, includ-
ing the forced swimming test, chronic mild stress, and novelty-

suppressed feeding (265). The latter study showed enhanced
hippocampal cell proliferation, an effect that requires BDNF-
tyrosine kinase (TrkB) signaling. Thus, neurogenic and anti-
depressant-like IH effects may involve BDNF.

Accumulating evidence supports the concept that moderate
IH has protective and therapeutic benefits in human depression,
although this evidence is not yet compelling. For example, IH
(5 min of 10% inspired O2, 5-min intervals, 120 min/day, 4 wk)
reduced depression symptoms in 71% of human patients (15).
Further studies are required to understand the therapeutic
potential of IH in cognitive/affective disorders.

Intermittent hypoxia induced-respiratory neuroplasticity.
Acute hypoxia increases carotid chemoreceptor activity,
thereby increasing breathing in the manner of a classical
negative feedback loop. This complex response reflects multi-
ple distinct neural mechanisms operating in different time-
domains (175). Factors that differentially elicit these distinct
mechanisms include the pattern of hypoxia (intermittent vs.
sustained), the duration of exposure (minutes to days), and the
severity of the hypoxic stimulus (181). Poikilocapnic hypoxia
masks the ventilatory response to hypoxia per se since it
reflects stimulation due to hypoxia, offset by ventilatory inhi-
bition from the resulting hypocapnia. Thus, the CO2 status
must be considered in any study of ventilation during or after
IH (19).

Different IH protocols elicit different cellular and network
mechanisms of respiratory plasticity (14, 152, 153, 239). For
example, moderate acute IH elicits a long-lasting (hours),
serotonin-dependent increase in respiratory motor output
known as respiratory long-term facilitation (LTF) (9). LTF
appears unique to IH, since it is not evoked by continuous
hypoxia of the same cumulative duration (14). Brief IH (3–10
consecutive hypoxic episodes) elicits sustained elevations in
phrenic and hypoglossal nerve activity and ventilation in mul-
tiple species (9, 27, 60, 82, 137, 144, 154, 239).

Since intermittent carotid sinus nerve stimulation is suffi-
cient to induce LTF (60, 82), it is an expression of central
neural vs. peripheral respiratory plasticity. Further, since pLTF
elicited by moderate acute IH is blocked by intraspinal admin-
istration of serotonin-receptor antagonists (without blocking
hypoglossal LTF) (13), pLTF is to be a form of spinal motor
plasticity. On the other hand, carotid chemoafferent neuron
activation is not essential to observe a form of IH-induced
pLTF since (surgical or functional) carotid denervation atten-
uates, but does not abolish, AIH-induced pLTF (16). However,
this form of pLTF may reflect an alternate (serotonin-indepen-
dent) pathway to long-lasting phrenic motor facilitation re-
vealed once the dominant serotonin-dependent pathway has
been eliminated. We have come to realize that multiple, dis-
tinct cellular cascades give rise to phenotypically similar,
long-lasting phrenic motor facilitation under different condi-
tions (37).

The correlate of pLTF in unanesthetized, spontaneously
breathing animals is ventilatory long-term facilitation (vLTF)
(160, 170). Although initial studies in humans raised questions
about its existence during wakefulness (95, 138, 156), subse-
quent studies revealed both ventilatory and genioglossus LTF
in humans during non-rapid eye movement sleep (35, 180) or
in awake humans with modest (background) elevations in
arterial carbon dioxide (80, 247).
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In longer time domains, or with more severe hypoxic epi-
sodes, additional forms of plasticity are elicited by IH (153).
For example, CIH (5-min episodes of 10–12% O2, 8–12
h/night, 7 days) elicits serotonin-dependent enhancement of 1)
baseline phrenic nerve activity, 2) the short-term hypoxic
phrenic response, and 3) phrenic LTF induced by acute inter-
mittent hypoxia (114, 115). CIH-enhanced LTF represents a
form of metaplasticity (i.e., the ability of prior experience to
alter subsequent plasticity) (2, 153). CIH-induced metaplastic-
ity represents a potential therapeutic advantage in restoring
breathing capacity with clinical disorders that cause respiratory
insufficiency [e.g., spinal injury, amyotrophic lateral sclerosis
ALS)] (151). Unfortunately, CIH also elicits considerable mor-
bidity, including hypertension, hippocampal apoptosis, and
cognitive deficits, among others (111, 259, see above). More
subtle protocols of repetitive acute intermittent hypoxia (rAIH)
have been developed to elicit pLTF metaplasticity without the
detrimental effects elicited by CIH. For example, rAIH (e.g.,
10, 5-min episodes, 10.5% O2, 5-min intervals, 3 times per
week for 10 wk or daily for 7 days) increases the expression of
key molecules involved in AIH-induced phrenic LTF without
signs of hippocampal apoptosis, astrogliosis, or systemic hy-
pertension (121, 208, 254). Further, rAIH elicits pLTF meta-
plasticity, enhancing AIH-induced pLTF following pretreat-
ment with daily AIH for 7 days (254), or AIH three times per
week for 4 wk (124, 245). Thus, fewer hypoxic episodes per
day (even with longer exposure durations) elicit pLTF meta-
plasticity without pathology. Such protocols have considerable
therapeutic potential following, for example, cervical spinal
injury (121, 231).

Activation of different cellular cascades within phrenic
motor nuclei accounts for many differential effects of varied
IH protocols. One hallmark of pLTF is its sensitivity to the
pattern of hypoxia; specifically, intermittent, but not sus-
tained, moderate hypoxia elicits pLTF (12). One key differ-
ence between intermittent and sustained hypoxia appears to
be the level of ROS-dependent inhibition of okadaic acid-
sensitive, serine threonine protein phosphatases (125, 253,
255). When ROS are scavenged (125) or their production is
blocked (126), pLTF is blocked following moderate AIH.
However, by inhibiting spinal serine/threonine protein phos-
phatases with okadaic acid after reducing ROS formation,
pLTF is restored (125). Conversely, with moderate sus-
tained hypoxia, serotonin-dependent phrenic LTF is re-
vealed by spinal okadaic acid administration, suggesting
that less ROS-dependent inhibition of the relevant phospha-
tases occurs with sustained hypoxia (255). In agreement
with this hypothesis, spinal okadaic acid has no effect on
pLTF following moderate AIH, suggesting that the relevant
phosphatases have already been inhibited by some process
unique to intermittent, but not sustained, hypoxia (253).

The severity of hypoxia within episodes is a key determinant
of the specific cellular mechanisms giving rise to pLTF (167).
For example, moderate AIH (3, 5-min hypoxic episodes; PaO2

35–45 mmHg; 5-min intervals) elicits pLTF by a mechanism
that requires spinal serotonin type 2 (5-HT2) receptor activa-
tion (9, 13, 65), new synthesis of BDNF (11), and activation of
its high-affinity receptor TrkB (11, 39), followed by ERK
MAPK signaling (88). In contrast, more severe AIH (less than
30 mmHg O2) elicits pLTF by a distinct serotonin-independent
mechanism that requires spinal adenosine 2A receptor activa-

tion (167). Spinal adenosine 2A (71) and 5-HT7 receptor
activation (86) elicit phrenic motor facilitation (pMF, an in-
crease in phrenic motor output elicited by receptor activation)
by a mechanism that requires new synthesis of an immature
TrkB isoform (not BDNF) and downstream signaling via
phosphatidylinositol 3-kinase/protein kinase B (Akt) (not
ERK) (71). In longer time domains (days), vascular endothelial
growth factor (VEGF) or EPO-induced phrenic motor facilita-
tion might play a role in longer time domains of IH, such as
during/after CIH or even chronic sustained hypoxia (39).
Spinal VEGF or EPO receptor activation triggers phrenic
motor facilitation via mechanisms that require both ERK and
Akt signaling (38, 41).

Another contributing factor to the pattern sensitivity of
pLTF appears to be balanced cross-talk inhibition between the
competing cellular cascades to pLTF described above (44).
With moderate AIH, phrenic LTF occurs predominantly via the
serotonin/BDNF/ERK-dependent Q pathway to phrenic motor
facilitation (37). However, subthreshold activation of the aden-
osine/TrkB/Akt-dependent S pathway restrains pLTF in this
condition via PKA-dependent cross talk inhibition (85, 87). At
some level of hypoxemia, extracellular ATP/adenosine builds
up enough to convert the system from serotonin-dependent (Q)
to adenosine-dependent (S) facilitation (167). With moderate,
sustained hypoxia, there appears to be sufficient balance be-
tween the serotonin- (Q) and adenosine-dependent (S) pathway
activation to cancel each other via balanced cross-talk inhibi-
tion (44). The strongest evidence for this is that spinal
pretreatment with an adenosine 2A receptor antagonist re-
veals serotonin-dependent phrenic LTF following moderate
sustained hypoxia (44). Thus, a number of factors contribute
to the pattern sensitivity of pLTF. The essential point from
the perspective of this review is that these distinctions in the
pattern and severity of hypoxia protocols are essential if we
are to control the specific physiological outcomes for ther-
apeutic benefit.

Collective evidence demonstrates that moderate repetitive
AIH can be harnessed as a therapeutic tool to restore lost
respiratory (and nonrespiratory) motor output in clinical dis-
orders that cause respiratory insufficiency, such as amyotro-
phic lateral sclerosis (151, 168), spinal cord injury (121, 151),
and sleep apnea (139), or that compromise breathing due to
mechanical constraints such as COPD (215).

Breathing in amyotrophic lateral sclerosis. ALS is a degen-
erative motor neuron disease, involving death of respiratory
motor neurons (267). Patients with ALS invariably develop
respiratory muscle weakness, and the most common cause of
death is ventilatory failure (108). Transgenic rats overexpress-
ing a mutated form of superoxide dismutase (SOD1G93A) have
been studied extensively as an animal model of familial ALS.
SOD1G93A mutants exhibit progressive motor neuron death and
faithfully mimic important aspects of familial ALS in humans,
including compromise of phrenic motor output (120, 161).
Interestingly, although more than 60–80% of all phrenic motor
neurons die at disease end-stage, phrenic motor output, only
decreases between 40 and 50% (168), reflecting the onset of
ventilatory failure. Nevertheless, despite major losses of inter-
costal motor neurons, the ability to increase tidal volume
during maximal chemoreceptor stimulation is fully preserved
(40). Thus, there is considerable intrinsic capacity to compen-
sate for major losses of key respiratory motor neurons, thereby
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preserving the capacity to generate tidal volume until late in
disease progression. The mechanisms underlying such sponta-
neous compensation are not yet known, but may reflect forms
of plasticity similar to pLTF since surviving phrenic motor
neurons at disease end-stage express high levels of BDNF and
TrkB protein (209). Nevertheless, respiratory motor neuron
death eventually overcomes the capacity for spontaneous com-
pensation, leading to overt ventilatory failure (229).

We recently tested the hypothesis that IH-induced respira-
tory motor plasticity strengthens synaptic inputs to surviving
motor neurons, thereby enhancing respiratory motor output and
slowing progression to ventilatory failure in ALS. Indeed, at
disease end stage, a single presentation of AIH (3, 5-min
episodes, PaO2 35–45 mmHg, 5-min intervals) fully restores
the capacity to increase phrenic motor output in anesthetized
rats (168). Further studies are needed to understand the poten-
tial of repetitive AIH to preserve ventilatory capacity further
into disease progression, hopefully improving the quality of
life for patients with this devastating disease.

Breathing after spinal cord injury. Respiratory complica-
tions are the leading causes of morbidity and mortality in
patients with spinal cord injury (SCI), especially among cer-
vical and higher-thoracic injuries (161a). There are few thera-
peutic options available after the acute, postinjury period, when
mechanisms of spontaneous recovery are exhausted, and addi-
tional functional improvement is unlikely (141). Recent work
in rodent models has demonstrated that repetitive AIH is a
viable therapeutic approach to restore breathing capacity after
cervical spinal hemisections (121).

Cervical spinal hemisection at C2 (C2HS) causes persistent
deficits in the capacity to increase phrenic motor output (69)
and tidal volume in rats (63, 121). In rats with C2HS, even a
single presentation of AIH strengthens spinal synaptic path-
ways to phrenic motor neurons below the hemisection by
activating serotonin-dependent neuroplasticity (63, 70). How-
ever, the capacity of AIH to induce crossed-spinal synaptic
pathways to phrenic motor neurons below the injury is highly
dependent on time postinjury. For example, following C2HS,
AIH (3 episodes, 5 min at 11% O2, 5-min intervals) induces
ipsilateral pLTF (�60 min post-AIH) at 8 wk postinjury, but
not at 2 wk postinjury in Sprague-Dawley and Lewis rats (70).
This increasing ability to elicit pLTF with time postinjury
correlates with spontaneous restoration of serotonergic input to
the phrenic motor nucleus below the injury (70). Thus, IH may
be more effective at restoring respiratory function in patients
with chronic (vs. acute) spinal injury, once descending seroto-
nergic innervation has had sufficient time to recover below the
injury to the greatest extent possible. Further, 2 wk post-C2HS,
repeated AIH (10, 5-min episodes per day, 10.5% O2, 5-min
intervals, 7 consecutive days beginning 7 days post-C2HS)
increases the strength of crossed-spinal synaptic inputs to
phrenic motor neurons and at least partially restores the capac-
ity to increase tidal volume during maximal chemoreceptor
stimulation in rats (121). This functional recovery is accom-
panied by increased expression of key proteins necessary for
AIH-induced phrenic motor plasticity (121), without evidence
for hippocampal cell death or reactive gliosis. Detailed mech-
anisms of rAIH-induced functional recovery are not yet fully
explored.

A more aggressive CIH protocol in rats (72, 5-min episodes
of 10.5% O2, 5-min intervals, 7 consecutive nights, beginning

7 days postinjury) also induces functional recovery of phrenic
motor output and strengthens crossed spinal synaptic inputs to
phrenic motor neurons below the injury (64). However, CIH is
expected to elicit morbidities, such as systemic hypertension,
CNS inflammation, and neuronal death. Since the less severe
repetitive AIH elicits similar functional recovery without ap-
parent morbidity (208), such “low-dose” IH protocols have
greater clinical potential.

Limb function and walking after spinal cord injury. Repet-
itive AIH also elicits sustained functional recovery of forelimb
function in rats with partial C2HS (121). rAIH-induced func-
tional improvement is accompanied by increased BDNF and
TrkB levels in cervical (C7) motor nuclei innervating the
forelimb (121). Although the detailed mechanisms of this
functional recovery have not been verified, we suggested that
the same serotonin-dependent mechanisms facilitate motor
output in respiratory and nonrespiratory motor nuclei (39).

The use of IH to improve limb function in humans with
incomplete, chronic SCI has also shown promising results. A
single AIH presentation (15, 1-min episodes of 9% O2, 1-min
intervals) in incomplete, chronic (�1 year) spinal cord injury
patients [American Spinal Cord Injury Association Impairment
Scale (AIS) C or D] increases the ability to voluntarily generate
plantar flexion for at least 4 h post-AIH (235). Subsequently, in
a randomized, double-blind, placebo-controlled, cross-over de-
sign study, the impact of repetitive AIH (15 episodes per day,
90 s of 9% O2, 60-s intervals, 5 consecutive days) combined
with walking training was studied in 19 chronic, incomplete
SCI patients (AIS D) (83). Daily AIH alone increased walking
speed 18% 3 days after treatment (10-m walk test), whereas
dAIH combined with walking training improved both walking
speed and distance (38%) after 5 days and at 1 wk post-dAIH
(83). Importantly, no changes in spasticity, heart rate, or
cognitive function were noted after dAIH, suggesting that this
moderate IH dose is relatively safe in humans.

General Discussion

Intermittent hypoxia has been a subject of considerable
investigation from the viewpoint of its adverse and (less widely
known) beneficial effects. Recent studies reveal that IH has
varied effects on multiple systems and that the magnitude of
these effects (and even the direction) depends on the IH dose.
Relevant variables include 1) the severity of hypoxemia, 2) the
duration of hypoxia, 3) the number of cycles/day, 4) the pattern
of IH presentation (e.g., consecutive days vs. alternating days)
and 5) the total protocol duration. Of these, the severity of
hypoxia and the number of cycles per day appear to be most
strikingly correlated with its qualitative effects (Fig. 1). With
high cycle numbers and/or severe hypoxic episodes, pathogen-
esis is more common, although potentially beneficial effects
are also observed (Fig. 2). With low cycle numbers per day
and/or mild to moderate hypoxic episodes, apparently benefi-
cial effects are more predominant (with considerably less
pathology) (Fig. 3). Accumulating evidence suggests that low-
dose IH has considerable therapeutic potential to treat multiple
clinical conditions (Fig. 1).

Detrimental effects of high-dose IH protocols (2–8% O2,
48–2,400 cycles/day) are observed in multiple systems and
include systemic hypertension (21, 57, 111, 225), hypercho-
lesterolemia (210), obesity, insulin resistance (189), increased
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sympathetic activation (268), pulmonary hypertension (142),
cognitive deficits (30, 48, 74), and inflammation (4) (Fig. 1). In
striking contrast, low-dose IH protocols (9–16% O2, 3–15
cycles/day) reduce arterial hypertension (213), strengthen in-
nate immune responses, reduce inflammation (214), reduce
body weight, increase aerobic capacity (240), improve glucose
tolerance (33), increase bone mineral density (77), enhance
spatial learning and memory (122, 262), rescue ischemia-
induced memory impairment (237, 238), reduce symptoms of
depression (15), improve postischemic recovery of myocardial
contractile function (249), increase respiratory capacity in
COPD (79), and increase respiratory and nonrespiratory so-
matic motor recovery following spinal injuries in rats and
humans (83, 121, 235, 244) (Fig. 1). Moreover, repetitive

low-dose IH has these benefits without detectable adverse
consequences, such as hypertension (254), neuronal cell loss
and/or reactive gliosis (121, 208), and systemic inflammation
(185, 227).

Detrimental effects induced by high-dose IH often relate to
increased oxidative stress and systemic inflammation. Repeti-
tive hypoxia-reoxygenation is in some respects like repeated
ischemia-reperfusion, and increases ROS formation (106). In-
creased ROS production will activate NF-�B and, hence,
expression of NF-�B target genes, such as proinflammatory
cytokines (e.g., TNF-�, IL-6, and ICAM-1) (106). Such in-
flammatory molecules have potential to cause cellular damage
and endothelial dysfunction, with associated morbidities. In
contrast, modest IH protocols do not cause inflammation in
humans (214), and may, in fact, strengthen the innate immune
system, while suppressing proinflammatory mediator produc-
tion (214). Thus, there are multiple reasons to suggest that
low-dose IH will be simple, safe, and effective in the treatment
of diverse clinical disorders that affect multiple body systems.
To optimize IH as a therapeutic approach to treat clinical
disorders, a balance must be achieved between maximizing
benefits (i.e., the highest IH dose possible) without pathology
(i.e., not high enough to trigger pathogenesis). It is also
important to understand conditions that may undermine the
therapeutic efficacy of IH. For example, systemic inflammation
(commonly present in SCI patients) undermines hippocampal
synaptic plasticity (i.e., learning and memory), as well as spinal
respiratory motor plasticity (89, 91, 246). By preventing this
undermining effect, we may be able to maximize therapeutic
benefits.

Perspectives and Significance

The potential applications of IH in health and pathological
states are numerous, but require considerable research to de-
velop protocols that optimize the balance between efficacy and
safety in each physiological system. The benefits of this re-
search may be considerable since low-dose IH appears to
represent a simple, safe, nonpharmacological method to en-
hance normal physiological functions, or to restore lost func-

Fig. 2. Selected IH protocols reported to elicit pathology. Each protocol depicts
the effective IH “dose,” including the severity of hypoxia during each episode
(inspired O2), the duration of hypoxic episodes (6 s to 12 h), the number of
cycles per day (c/day), and the total time of exposure. Severe protocols (2–8%
inspired O2, 48–2,400 c/day) have been shown to elicit detrimental effects in
multiple physiological systems (see orange-to-red shading in Fig.1).

Fig. 3. Selected IH protocols reported to elicit beneficial (po-
tentially) therapeutic effects. Each protocol depicts the effective
IH “dose,” including the severity of hypoxia during each
episode (inspired O2), the duration of hypoxic episodes (6 s to
12 h), the number of cycles per day (c/day), and the total time
of exposure. Moderate IH protocols consisting of 9–16% O2

and up to 15 cycles per day elicit beneficial effects in multiple
physiological systems (blue shading in Fig. 1).
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tions (i.e., rehabilitation) in patients with diverse chronic clin-
ical disorders.
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